
1.  Introduction
Stream networks expand and contract through time, yielding insight into how hillslope runoff generation 
interacts with channel hyporheic flow properties to create aquatic ecosystem habitat. Ephemeral and inter-
mittent streams constitute much of Earth's fluvial channel network (Datry et al., 2007; Kampf et al., 2021; 
Messager et al., 2021), and are increasingly being studied due to their role in a wide range of earth system 
processes (Fovet et al., 2021), such as carbon transport (e.g., Wondzell & Ward, 2022), water transit times 
(e.g., Lapides et al., 2022), metapopulation dynamics (Durighetto et al., 2022; Giezendanner et al., 2021), and 
water-borne disease transmission (e.g., Perez-Saez et al., 2017). Historically, time-consuming walking surveys 
have provided the observational basis for our understanding of the dynamic extent of wetted stream channels in 
headwater catchments (e.g., Godsey & Kirchner, 2014; Lovill et al., 2018; Whiting & Godsey, 2016). However, 
these surveys are limited in their spatiotemporal coverage (Lapides et al., 2021), underscoring the status of 
headwater stream networks as aqua incognita (Bishop et al., 2008). Sparse observations have limited explora-
tion of the physical controls on channel growth and contraction (Moidu et al., 2021). Nevertheless, availability 
of wetted channel data is increasing, and advances in technology, especially within the realms of unmanned 
aerial systems (e.g., Micieli et al., 2022) and high resolution satellite imaging (e.g., Vanderhoof & Burt, 2018), 
will continue to improve monitoring efforts.
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is dynamic in space and time, with wetted channel length varying by orders of magnitude over the course of a 
single storm event in headwater catchments. To date, observational data sets are produced from boots-on-the-
ground campaigns, drone imaging, or flow presence sensors, which are often laborious and limited in their 
spatial and temporal extents. Here, we evaluate satellite imagery as a means to detect wetted channel extent 
via machine learning methods trained on local surveys of wetted channel extent. Even where channel features 
are smaller than the imagery's spatial resolution, the presence of surface water may be imprinted upon the 
spectral signature of an individual pixel. For two catchments in northern California with minimal riparian 
canopy cover and highly dynamic wetted channel extent, we train a random forest model on RapidEye imagery 
captured contemporaneously with the existing surveys to predict wetted channel extent (accuracy >91%). The 
model is used to produce length-discharge (L-Q) relations and to calculate spatially distributed estimates of 
channel hyporheic flow capacity and exchange. A sharp break in hyporheic flow capacity occurs from main 
stem channels to lower order tributaries, resulting in a stepped L-Q relationship that cannot be captured by 
traditionally used power law models. Remotely sensed imagery is a powerful tool for mapping wetted channels 
at high spatial resolution.
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What determines whether the surface is wetted along a particular reach? Carlston (1963) articulated a general 
principle:

“…as transmissibility decreases, the amount or rate of movement of ground water passing through the 
system decreases and a proportionately greater percentage of the precipitation is forced to flow directly 
into the streams in flow over the land surface.”

This general idea also forms the basis for the variable source area concept described by Hewlett and Hibbert (1967), 
who noted that:

“…when the subsurface flow of water from upslope exceeds the capacity of the soil profile to transmit it, 
the water will come to the surface and channel length will grow.”

This flow-emergence principle is applicable on both hillslopes—where saturation overland flow may be gener-
ated (Beven & Kirkby, 1979)—as well as in channels—where the presence of water at the surface depends on 
whether the up-network delivery of water to a point exceeds the subsurface flow capacity of the hyporheic zone 
(equal to the product of the local slope and cross-sectional area-average conductivity of the material in the hypor-
heic zone). The idea appeared again in the context of network-scale wetted channel extent mapping (Godsey & 
Kirchner, 2014), re-invigorating the study of process controls on stream network dynamics. We use the term 
hyporheic zone in a broad sense to refer to the saturated subsurface of the river corridor that is capable of convey-
ing (and exchanging) flow down the river network.

An important implication of the flow-emergence principle is that when a reach transitions in time from wet 
to dry, the flow being conveyed by the channel at that point equals the hyporheic flow capacity (Durighetto 
et al., 2020; Godsey & Kirchner, 2014; Prancevic & Kirchner, 2019). If runoff generation is uniform in space, 
then area-normalized discharge (unit runoff, Q (L T −1); see Table 2 for a complete description of variables) at 
the catchment outlet can be used as an estimate for runoff at any point in the watershed. Thus, instantaneous unit 
runoff measured at the outlet can be used to approximate hyporheic flow capacity (ρ (L T −1)) at points in the 
network that are transitioning from wet to dry (Durighetto & Botter, 2022). Because flow capacity varies through-
out the network (due to local topographic and hyporheic properties), a range of wetted channel extent maps are 
required to identify the flow thresholds that delineate wet and dry states throughout the watershed. Paired with 
the flow-emergence principle and an assumption of spatially uniform unit runoff, surface water presence-absence 
dynamics provide a unique window into the hyporheic zone, which has historically been difficult to characterize 
(Ward et al., 2018; Wondzell, 2011).

Establishing a record of wetted channel extent across the full range of observed flows remains a challenging task 
(Jaeger et al., 2021). Recent methodological developments, such as the deployment of flow presence-absence 
sensors and drone surveys (e.g., Carbonneau et  al.,  2020; Dugdale et  al.,  2022; Jensen et  al.,  2019; Micieli 
et al., 2022; Zanetti et al., 2022), provide important constraints, but still tend to be limited in space or time (at 
least relative to other hydrological data, such as flow observations). There are some data-driven approaches that 
classify the intermittency of a particular reach (e.g., Jaeger et al., 2019; Sando & Blasch, 2015) using climatic and 
geological correlates, but attempts to remotely observe water presence/absence are limited to large open-water 
(Wang et al., 2022) bodies or main stem river reaches with widths greater than ∼10–30 m (Li et al., 2020; Qin 
et al., 2021; Verma et al., 2021; Wang et al., 2022). Headwater stream widths are typically much smaller (Allen 
et  al.,  2018), below the resolution of most satellite data products. However, there is evidence that, even if a 
channel is smaller than the satellite image pixel scale or is partially obscured by vegetation, individual pixels 
themselves may contain spectral information on sub-canopy conditions or transitions in cover type (e.g., wet to 
dry, or in an analogous problem of classifying vegetation cover, forested to not forested Carbonneau et al., 2020; 
Chambers et al., 2009; Eriksson et al., 2006; Linderman et al., 2004; Ling et al., 2020; Xue et al., 2022). These 
are also referred to as “mixed pixels.”

Here, we explore the ability of a random forest machine learning model to identify the presence of wetted chan-
nels at the sub-pixel scale with relatively high resolution (5 m pixel) satellite imagery trained on existing wetted 
channel surveys in small headwater catchments with a highly dynamic stream extent. We use the resulting predic-
tive model to generate ∼ weekly maps of wetted channel extent at 10 m spaced points along the stream. We then 
identify flow thresholds from the outlet hydrograph that delineate wet and dry states across the geomorphic chan-
nel network, thus producing spatially distributed estimates of hyporheic zone flow properties at the sub-reach 
scale.
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2.  Methods
2.1.  Site Description

The study catchments (Dry Creek, 3.54 km 2, and Hank Creek, 5.59 km 2, the southern and northern catchments 
shown in Figure  1, respectively) are located within the Eel River watershed in Mendocino County, Califor-
nia. Average annual rainfall is approximately 1,800 mm, mostly delivered during a winter wet season (typically 
November through April), followed by a warm dry season (May through October) (Dralle et al., 2018). Snow 
is rare at the sites. The sites are situated within relict deep-seated earthflow terrain of the central belt melange 
of the Franciscan complex (Blake et al., 1985; Langenheim et al., 2013), a geological assemblage made up of 
three roughly north-south trending belts (coastal, central, eastern). The melange contains rocks of mixed lithol-
ogy and size suspended within a clay-like, shale-derived matrix. Weathering profiles in the melange are thin, 
and a perennial water table can be found at depths typically less than 3 m, even at the end of the dry season 
(Hahm et al., 2019). In the early winter months, infiltrating rainfall rapidly replenishes root-zone water storage 
deficits, leading to recharge of groundwater tables that rise to the ground surface, typically within 200 mm of 
seasonal total rainfall (Dralle et al., 2018). Once water tables intersect the ground surface, saturation overland 
flow is widespread and channel networks rapidly expand, with flows that can exceed 50 mm per day (Lapides 
et al., 2022). Rapid flow increases are followed by quick recessions with attendant contraction of wetted channel 
extent. Runoff responds rapidly to precipitation (typical lag-to-peaks in Dry and Hank Creeks of only 2–3 hr 
[Lapides et al., 2022]). At runoff rates >10 mm/day, most of the channel network has flowing water and satura-
tion overland flow extends up adjacent hillslopes (Lapides et al., 2022). Thin weathering profiles with small water 
storage capacity also impact the site's plant community—a relatively sparse oak savanna, comprised mainly of 
non-native annual grasses and Oregon white oak (Quercus garryanna) (Hahm et al., 2017, 2018, 2019).

The geomorphic channel drainage density is 16.9  km/km 2, with an average upslope contributing area at the 
channel heads of 1,085 m 2 (Lovill et al., 2018). Wetted channel widths at Dry and Hank Creeks vary from zero 
(at the geomorphic channel heads) to typical winter storm values of 5 m (for Dry) and 8 m (for Hank) at the staff 
gauge locations near their outlets. The upper portions of the channel network (between contributing areas of 
1,085 and 10,000 m 2) have very narrow channels (generally less than 1 m width), and their wetted dynamics are 
not considered in this study. For drainage areas above 10,000 m 2, a single power law relationship describes well 
the geomorphic channel slope as a function of drainage area in both the Dry and Hank Creek networks (Lovill 
et al., 2018). To increase the likelihood that the uniform unit runoff assumption is valid, we analyzed channels 
that integrate over relatively large contributing areas; in this case, at least an order of magnitude (10×) greater 
than the characteristic channel initiation threshold area. We performed our analyses at smaller and larger scales 
and results were not particularly sensitive to this choice. Average hillslope gradients (calculated from 1 m pixels 
using data from Lovill et al. (2018)) are 28%, and landscape-wide cosmogenic nuclide-inferred erosion rates are 
between 0.12 and 0.16 mm/year (Hahm et al., 2019).

2.2.  Data Sources

2.2.1.  Streamflow

Water levels recorded at 15 min intervals as part of the Eel River Critical Zone Observatory monitoring program 
are converted to streamflow data near the outlet of Dry Creek (near gaging station; Figure 1). Rating curve devel-
opment is detailed in Hahm et al. (2019), and accuracy is estimated to be between 5% and 10% of the true value of 
Q. Because lag to peak response timescales in Dry Creek are much less than a day (Lapides et al., 2022), the flow 
measured at the gage is considered to be representative of flow conditions throughout the watershed at the daily 
timescale. Field measurements of discharge were also made in Hank Creek between 2015 and 2019 (n = 24, data 
not shown) which established that Dry and Hank Creek have nearly identical instantaneous unit runoff (discharge 
normalized by catchment area), leading to the use of Dry Creek's runoff (calculated with a more frequently 
updated rating curve) as a proxy for runoff at Hank Creek. Unless otherwise stated, reported runoff data comes 
from the Dry Creek gauging station.

2.2.2.  Topography

A bare earth digital elevation model (DEM) at 1 m resolution was generated from LIDAR data collected by 
the National Center for Airborne Laser Mapping in 2015 (https://doi.org/10.5069/G9WH2N2P). Geomorphic 
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Figure 1.  Hillshade of adjacent study catchments with study channels and gauging station location (a) and topographic map 
with 10 m spaced elevation contours (b, elevations labeled in meters) both derived from a Lidar digital elevation model. Panel 
(c) shows aerial imagery (bottom, Esri “World Imagery,” accessed 27 September 2022). Panel (d) is a photograph taken of a 
Dry Creek sub-catchment during a high flow event, from Hahm et al. (2019).
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channel networks and upstream contributing areas were mapped from this DEM, which also served as the 
basemap for wetted channel mapping.

2.2.3.  Satellite Imagery

We acquired 217 scenes of cloud- and snow-free RapidEye satellite imagery (5 m pixel scale, 8 m orthorectifi-
cation accuracy) from Planet Labs (Planet Team, 2017). The imagery contains five spectral bands: 440–510 nm 
(blue), 520–590 nm (green), 630–685 nm (red), 690–730 nm (red edge) and 760–850 nm (near infrared). All 
images were visually inspected for artifacts and other visible irregularities. Imagery were downsampled to 10 m 
resolution to account for lower orthorectification accuracy.

2.2.4.  Wetted Channel Extents

Data on wetted channel extents is derived from four primary maps (which include two distinct dry season surveys 
(negligible runoff) and two distinct wet season surveys (high and low runoff) that are mapped in the left column 
of Figure 4) and multiple inferential maps. These training data are summarized in Table 1 and described in detail 
as follows:
�Walking surveys Two boots-on-the ground walking surveys of the entirety of the Hank and Dry channel networks 

were performed by Lovill et al. (2018) in 2015. RapidEye imagery paired with the first walking survey was 
collected approximately 4 days (4 June 2015) after the end of the 5 day long survey (26 May through 31 May 
2015). It is possible that some pixels classified as wet during the walking survey may have dried between the 
end of the walking survey and the imagery date. The second survey occurred 20–24 August 2015, and was 
ideally paired with imagery during the middle of the survey on 22 August 2015.

�Drone survey During a wet-season dry spell in February of 2018, an unmanned aerial vehicle survey on 4 February 
2018 (8 days after the most recent rainfall) revealed that channels with contributing area less than 20,000 m 2 were 
entirely dry. RGB drone imagery (collected using a DJI Mavic Pro) was flown over approximately 1/2 of the total 
catchment area, and channel condition was assessed manually by video review. Channels are clearly aerially visible 
throughout the watershed (see Figure 1d), even in locations with riparian vegetation, which does not significantly 
overhang channels. RapidEye imagery from the nearest following image date (12 February 2018 with intervening 
rainfall of only about 1 mm) therefore provides “dry” observations of smaller channels (between contributing areas 
of 10,000 and 20,000 m 2) during the typical wet season months. This is important for training the random forest 
model, as it helps disentangle spectral signatures that might correlate with large extent of wetted channel (e.g., high 
greenness from grasses during wet periods) from true spectral indicators of channel wetness.

�High flow survey We identified one cloud-free image that coincides with a very high-flow rate of 34 mm/day. 
Field visits indicate that the channel network considered here can be assumed to be fully wetted at flow rates 
exceeding 10 mm/day (Lapides et al., 2022). The channel network on the high flow day is therefore assumed 
to be fully wetted.

�Extrapolative/interpolative surveys Machine learning approaches can require significant amounts of data for 
training and validation. To increase the amount of imagery data available for training, we rely on the “hierar-
chical principle” described by Botter et al. (2021), which states that, “…temporary stream activation follows 
a fixed and repeatable sequence, in which the least persistent sections activate only when the most persis-
tent ones are already flowing.” The hierarchical principle is implicit in (though not exclusive to) previous 
frameworks (e.g., Prancevic & Kirchner, 2019), and is a consequence of the two process-based assumptions 
stated in the Introduction: (a) Surface flow emerges when up-network discharge equals the hyporheic flow 
capacity at a point in the stream network, and (b) unit runoff is spatially uniform. If these are true, the 
hierarchical principle follows. These ideas suggest two approaches for extrapolating or interpolating wetted 
channel surveys to obtain additional training data. The first approach, which we refer to as “interpolative,” 
involves interpolating between the two walking surveys. These surveys capture the summer recession, and 
we reason that any reaches dry at the beginning of the summer remain dry throughout the whole (rainless) 
summer. Conversely, any reaches that are still wet at the end of the summer are wet for the duration of time 
between the surveys. We further extend these data using the following “extrapolative” method. First, we 
know that there was essentially no rainfall between 15 March 2015 and the first survey date (26–31 May 
2015). Furthermore, a nearby (20 km) stream—Elder Creek, which has flow that is strongly correlated to 
Dry Creek (Hahm et al., 2019)—was monotonically decreasing during this period. We use these two pieces 
of information to infer that all wet reaches during the first survey were wet for the entire period from 15 
March to 26 May. We further noted that there was essentially no rainfall during the months of July–October 
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during the study period, so we inferred that dry reaches during the first walking survey remained dry during 
all summer months in the study period. Finally, given the correspondence between Elder Creek and Dry 
Creek, we inferred that any wet reaches during the first walking survey (26–31 May 2015, when Elder Creek 
discharge was approximately 0.3 mm/day) would also be wet on any date on which Elder Creek runoff was 
0.9 mm/day (i.e., a threefold safety factor). At such times, we infer that Dry Creek discharge (which was not 
measured in early 2015) was larger than during the May walking survey.

2.3.  Random Forest Model and Training Data Pre-Processing

We trained a random forest machine learning classification model (Belgiu & Drăguţ, 2016) to identify wetted 
channel reaches from the satellite imagery, implemented in Python via the Scikit-Learn package (Pedregosa 
et al., 2011). Random forests are ensembles of decision trees, each of which is classified on a subset of the train-
ing data in order to reduce overfitting.

To create the data sets for the random forest modeling, we extracted equally spaced 10 m nodes along the channel 
network. Survey data from walking surveys Lovill et al. (2018) were extracted from polylines to nodes using a 
1.5 m buffer. Labels for the drone survey and high-flow survey were applied directly to these nodes based on 
drainage area threshold criteria described above. Extrapolated and interpolated data used extracted points from 
other survey dates. To improve the strength of spectral signal originating from within the channel itself (as 
opposed to on side slopes), the channel network nodes were clipped to drainage areas greater than 10,000 m 2, 
approximately 10 times larger than the average drainage area required for channel initiation. For this reason, 
predicted wetted channel extents are underestimates of the true extent of wetted channel at high flow values. 
Each node for the relevant portions of the wetted channel maps described above was assigned a 1 (wetted) or 0 
(dry) target prediction label. All RapidEye pixel band values were extracted at the location of each node for each 

Variable Dimensions Description

L (–) Wetted channel drainage density (sum of length of wetted reaches normalized by total 
channel length)

A L 2 Drainage area

A0 L 2 Drainage area at outlet

D L 3T −1 Discharge at the outlet

Dexf L 3T −1 Exfiltration exchange flux from hyporheic zone to stream integrated across wetted channel 
network

Dhef L 3T −1 Exchange flux between stream and hyporheic zone integrated across wetted channel 
network; calculated as 𝐴𝐴

(

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 +𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖

)

∕2

Dinf L 3T −1 Infiltration exchange flux from stream to hyporheic zone integrated across wetted channel 
network

H L Average local reach hyporheic zone thickness

𝐴𝐴   L 3T −1 Reach hyporheic flow capacity, expressed as volume per time

K L T −1 Average local reach flow-parallel hydraulic conductivity

qgw L 2T −1 Along-reach specific groundwater inflow

qhef L 2T −1 Along-reach specific exchange flux between stream and hyporheic zone

Q L T −1 Upstream-area normalized discharge (i.e., runoff) at the outlet (D/A0)

S (–) Local reach slope

W L Average local reach hyporheic zone width

x L Along-reach (longitudinal) channel coordinate

α 𝐴𝐴
(

𝑇𝑇𝑇𝑇−1
)𝛽𝛽  Scaling intercept for L-Q relationship

β (–) Scaling exponent for L-Q relationship. Fraction by which L changes for a change in Q

ρ L T −1 Reach hyporheic flow capacity, expressed as volume per time normalized by upstream area

Table 2 
Description of Variables
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RapidEye scene for use as input features. Predictors used for the random forest model include: blue, green, red, 
rededge, and near infrared bands from RapidEye pixels and the normalized difference water index ([NDWI], 
Gao, 1996) calculated from RapidEye pixel values.

We first split all of the available data into randomly selected training (75% of the data) and testing (25% of the 
data) groups. The random forest was trained on the training data group initially, and predictions were made for the 
test data group to obtain accuracy metrics. We also tested the importance of each type of training data by perform-
ing leave-one-out (LOO) accuracy tests for each row of Table 1 (including any other extrapolated or interpolated 
data derived from that row using the methods described in Section 2.2.4). The entirety of the wetted channel data 
set was then used to train a final classifier that was used to predict wetness states for each RapidEye image in the 
collection. Default Scikit-learn v1.0.1 Random Forest Classifier parameters were used: 100 trees in the forest, 
Gini impurity to measure the quality of splits, no maximum tree depth, two samples required per split, one mini-
mum sample in each leaf, and the square root of the number of features considered for each split. We performed 
hyperparameter tuning on tree-depth and found no significant difference in model performance on the test set 
across a range of values and therefore chose the default (and most straightforward to present) parameterization.

2.4.  Power Law Model to Relate Runoff and Wetted Channel Length

With 217 RapidEye scenes, our wetted channel maps cover a large range of conditions, but the distribution of 
flows on dates for which we have RapidEye scenes is not the same as the full natural distribution (see Figure 9d), 
due largely to the fact that clouds are more common in the wet season at higher flows. To interpolate across all 
possible network states, Godsey and Kirchner (2014) demonstrated that a power-law relationship may be appro-
priate to relate runoff at the outlet to wetted channel length. We fitted a power law curve of the form:

𝐿𝐿 = 𝛼𝛼𝛼𝛼𝛽𝛽,� (1)

where L [·] is the wetted channel length as a fraction of the maximum observed wetted channel length (also plotted 
in length units in Figure 5b), α is a positive constant, Q (mm/day) is runoff at the outlet, and 0 ≤ β ≤ 1. We used 
this relationship with the full distribution of daily streamflow during the study period to infer the full distribution 
of wetted channel extents. We nevertheless recognize this may be an underestimate of the full extent of wetted 
channel at high flow values, where surface flow extends below the 10,000 m 2 contributing area threshold used 
to identify study reaches (Hahm et al., 2019; Lapides et al., 2022). Additionally, Durighetto and Botter (2022) 
clarify that the power law model may be problematic for other reasons; for example, it is not bounded with respect 
to Q. The power law model also does not allow for “stepped” behavior in the L-Q relationship. The power law fit 
should be taken as a rough approximation of the true L-Q relationship, and we include it primarily for the purpose 
of comparison against extant studies which have commonly reported exponent values.

2.5.  Logistic Regression Model to Estimate Hyporheic Flow Capacity

The occurrence of water at the surface is observed when the flow rate at a specific location surpasses the subsur-
face's ability to transport that flow (Godsey & Kirchner, 2014; Hewlett & Hibbert, 1967). As such, the runoff at the 
transition in time between a dry and wet state at a particular node is equal to the hyporheic zone's subsurface flow 
capacity at that location (Durighetto & Botter, 2022; Godsey & Kirchner, 2014; Prancevic & Kirchner, 2019). To 
model this relationship, logistic regression models were fitted to the random forest predictions of wet versus dry 
conditions as a function of instantaneous runoff, with each node analyzed separately.

Subsequently, the flow capacity (ρ, expressed in mm/day) at each node was estimated as the value where the 
logistic function first predicts the reach to be wetted. The hyporheic capacity, expressed as discharge in m 3/day 

𝐴𝐴 () , was then calculated by multiplying the ρ value by the drainage area at each node. Due to uneven distribu-
tion of predictions between wet and dry conditions at nodes, logistic regression predictors were weighted by the 
inverse sizes of the dry and wet sample sets, ensuring that each sample had an equal influence on the fit.

Additionally, the logistic regression model can be employed to extend random forest predictions to all dates 
with runoff observations. By utilizing the estimated flow capacity at each location, it is possible to determine 
the number of wetted nodes for each daily streamflow value during the study period. Specifically, if the ρ value 
derived from the logistic regression is lower than the daily runoff, the channel is considered to be wet on that day. 
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The total wetted channel extent can be obtained by multiplying the sum of 
wetted nodes by the inter-node length (10 m).

2.6.  Hyporheic Exchange Flows

Longitudinal (along-stream) gradients in flow capacity estimated from the 
logistic regression approach may also be used to constrain hyporheic exchange 
flows throughout the network. We follow the model for wetted channel expan-
sion/contraction developed by Ward et al. (2018) (see Figure 2), who posit 
two laterally homogeneous, parallel domains representing the surface stream 
environment and subsurface hyporheic zone. Surface flow only occurs where 
runoff exceeds ρ; at these places in the subsurface hyporheic zone, the conti-
nuity equation requires:

𝑞𝑞ℎ𝑒𝑒𝑒𝑒 = 𝑞𝑞𝑔𝑔𝑔𝑔 −
𝜕𝜕

𝜕𝜕𝜕𝜕
,� (2)

where x is defined as positive in the down-valley direction, qgw is the per-channel-length contribution of ground-
water from channel-adjacent hillslopes (units of m 2/day), 𝐴𝐴  is the hyporheic flow capacity expressed in volumet-
ric flow units (m 3/day) obtained by multiplying ρ at a point by upslope contributing area at that point 𝐴𝐴 ( = 𝜌𝜌 ⋅ 𝐴𝐴) , 
and qhef (converted to m 2/day) is the channel-specific hyporheic exchange flow. If there is no gradient in hyporheic 
flow capacity (i.e., the right-most term in Equation 2 is zero), then continuity implies that hyporheic exchange 
must be equal to the incoming local groundwater flux. If instead qgw is negligible, Equation 2 states that if volu-
metric flow capacity decreases in the downstream direction (i.e., 𝐴𝐴

𝜕𝜕

𝜕𝜕𝜕𝜕
< 0 ), there must be exfiltration (qhef > 0) 

of water from the hyporheic zone into the surface environment (see Figure 2). Conversely, where flow capacity 
increases in the downstream direction 𝐴𝐴

(

𝜕𝜕

𝜕𝜕𝜕𝜕
> 0

)

 , water must infiltrate into the hyporheic zone (qhef < 0). Thus 
at any point in the network where flow exceeds capacity, spatial gradients in flow capacity can dictate whether 
surface flows are infiltrating or exfiltrating from the hyporheic zone.

Numerous metrics have been proposed to quantify hyporheic exchange flows (Kasahara & Wondzell,  2003; 
Wondzell,  2011). Here, we calculate the average (Dhef m 3/day) of the magnitudes of total network-integrated 
exfiltrating (Dexf, m 3/day) and infiltrating (Dinf) exchange flows, and report the ratio of Dhef to total volumetric 
discharge in the stream at the outlet (D, m 3/day) across a range of flow values (Dhef will change with catch-
ment discharge because wetted extent, and thus the integration domain for exchange flows, changes with catch-
ment  discharge). To place a lower bound on these exchange fluxes, we note that where flow capacity increases 
in the downstream direction (i.e., hyporheic infiltration is possible), the additional flow capacity may entirely be 
occupied by incoming groundwater fluxes, qgw. Therefore, a lower bound on hyporheic infiltration (qinf) may be 
calculated as:

𝑞𝑞inf = max
[

0,
𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑞𝑞𝑔𝑔𝑔𝑔

]

where ∶
𝜕𝜕

𝜕𝜕𝜕𝜕
> 0.� (3)

To calculate qgw along each 10 m reach between prediction points, we follow Schmadel et al. (2017) and multiply 
unit runoff (Q) by the contributing area difference between points, then divide by 10 m (the inter-node length), 
thus obtaining a channel-length specific groundwater efflux in units of m 2/day. Where 𝐴𝐴

𝜕𝜕

𝜕𝜕𝜕𝜕
< 0 , decreasing flow 

capacity requires that a minimum of 𝐴𝐴
𝜕𝜕

𝜕𝜕𝜕𝜕
 must exfiltrate from water stored in the hyporheic zone, in addition 

to exfiltration driven by qgw (which, we note may be the groundwater itself, or exfiltrating hyporheic storage 
displaced by incoming groundwater). Thus, a lower bound on exfiltration of hyporheic storage is:

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒 = −
𝜕𝜕

𝜕𝜕𝜕𝜕
where ∶

𝜕𝜕

𝜕𝜕𝜕𝜕
< 0.� (4)

We integrate these length-specific rates of exchange along all wetted channel paths (i.e., where D > ρ), obtain-
ing volumetric rates of infiltration (Dinf) and exfiltration (Dexf) from the hyporheic zone. Finally, following 
Wondzell (2011), we calculate Dhef as the average of these two rates:

Figure 2.  Simplified stream profile illustrating drivers of hyporheic exchange 
flows. Where volumetric flow capacity 𝐴𝐴 () in the HZ decreases in the 
downstream (x) direction 𝐴𝐴

(

𝜕𝜕

𝜕𝜕𝜕𝜕
< 0

)

 , there will be hyporheic exfiltration into 
the stream. Where flow capacity increases with x, there will be infiltration 
from the stream into the HZ.
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𝐷𝐷ℎ𝑒𝑒𝑒𝑒 = (𝐷𝐷inf +𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 )∕2� (5)

The ratio we report (Dhef : D) is somewhat different from Wondzell (2011), who compute Dhef as the channel-length 
specific flux (and thus their ratio has units of m −1). Here, (Dhef : D) is dimensionless, and can be interpreted as 
the ratio of the average gross volumetric flux between the hyporheic zone and the stream environment (Dhef) to 
the total volumetric flux exiting the watershed (D).

3.  Results
In the Results, we first describe (a) the random forest model's ability to infer wetness state from satellite imagery, 
which makes possible a description of (b) temporal dynamics of the wetted channel network, and finally (c) the 
inferred catchment-scale hyporheic flow capacity, wetted channel network length-discharge relationship, and 
hyporheic exchange flows.

3.1.  Random Forest Performance

Overall accuracy of the random forest model in validation is 91%. The confusion matrix in Figure 3a illustrates 
how this error is partitioned among false positives in the lower left corner (channel is classified as wet when it 
is actually dry) and false negatives in the upper right corner (channel is classified as dry when it is actually wet). 
The dark-colored diagonal of the confusion matrix contains the number of correct classifications. In general, false 
negatives (predicted dry when actually wet) are much more common than false positives. The relative prevalence 
of false negatives is also apparent in Figure 4 where many wet channels are classified as dry (dark blue in subplots 
i, f, and j). Even in this 100% wet training sample, however, prediction accuracy is quite good; 94% are predicted 
to be wet. The remaining rows in Figure 4 depict predictions and prediction error across other illustrative training 
data dates. The first two rows (a–c and d–f) illustrate predictions on the two walking survey dates from Lovill 
et al.  (2018). The bottom row (j–l) illustrates prediction accuracy during the single drone survey date from a 
wet time of year (February is a peak wet season month) with channels between contributing areas of 10,000 and 
20,000 m 2 that are nevertheless dry.

Figure 3.  (a) Confusion matrix illustrating prediction accuracy of random forest classifier model (trained on 75% of original data) on test data (25% with-held data 
points). (b) Permutation feature importance for features in model trained on full training data set.
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Figure 4.  Visual representation of model performance on the four primary training dates. In each subplot, L expressed the extent of active channel as a percent of total 
channel length (wet plus dry). The top two rows are the surveyed dates in summer 2015. The third row represents a fully wetted network during a wet season peak flow 
event, and the bottom (drone survey data) represents an image during the wet season when many small channels are nevertheless dry. The fourth row does not illustrate 
continuous networks because we only have suitable training data for contributing areas less than 20,000 m 2 on this particular date.

Figure 5.  (a) Timeseries of Dry Creek runoff (blue) shown with timeseries of wetted channel length normalized by the maximum predicted length as predicted by 
a power law fit (red). Red points are discrete values of L calculated from random forest model predictions on RapidEye satellite imagery. (b) The predicted wetted 
channel extent length as a function of outlet runoff (the power law fit excludes zero flow predictions; R 2 = 0.44). The continuous wetted channel prediction (red line in 
(a)), is estimated from the power law fit in panel (b) using the continuous streamflow timeseries.
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The LOO error analysis (last column of Table 1) indicates that wet training data from different times of year are 
extremely important for training an accurate random forest predictor. Including the single high-flow date was not 
adequate to train the model to recognize wetted reaches in general. Wet training data during the dry season (fifth 
row of Table 1) and high-flow dates (last row of Table 1) have by far the lowest LOO accuracies at 8% and 19%.

In the data repository (Dralle et al., 2022), we include additional analysis of the random forest model output and 
accuracy/uncertainty metrics. For example, we report on the agreement of trees within the random forest at differ-
ent times of year under different conditions, demonstrating that inter-tree agreement is generally highest during 
the dry season (i.e., prediction confidence is highest), and lowest from the end of the dry season through the wet 
season and for wet predictions in general.

3.2.  Wetted Channel Dynamics and Scaling

Wetted network extents predicted by the random forest (red points in Figure 5a) have seasonal patterns showing a 
mostly dry network in the summer when streamflow (light blue curve) is low, and variable extent during the wet 
season when flow varies over a few orders of magnitude (from 0.01 mm/day to nearly 50 mm/day). Consistent 
with theoretical expectations (Godsey & Kirchner, 2014; Prancevic & Kirchner, 2019), wetted extent generally 
exhibits power law scaling with runoff (Figure 5b), with a power law exponent β = 0.16. This exponent is likely 
an underestimate, as we do not predict wetted extent below contributing areas of 10,000 m 2, despite the fact that 
the network occasionally expands beyond this threshold during high flow periods (Lapides et al., 2022). The 
power law fit is also used to extrapolate wetted extent in Figure 5a (light red curve).

3.3.  Estimates of Hyporheic Flow Capacity

For each point throughout the network, logistic regression of the random forest predictions (wet or dry) onto 
runoff provides an estimate of hyporheic flow capacity (in runoff units), which we map in Figure 6a (inset illus-
trates the probability distribution function (PDF) of flow capacities throughout the network, expressed in runoff 
units). Figure 6b illustrates goodness of fit of the logistic regression, expressed as logloss in the map, and via a 
confusion matrix in the inset. The confusion matrix illustrates whether the regression properly classifies channel 
wetness state under different flow conditions. As represented by logloss, fits are fair with better performance in 
larger channels, likely because larger channels are easier to observe at the pixel scale of RapidEye satellites. This 
effect would seem to overcome more limited training data in larger channels compared to smaller channels, which 
are more numerous.

Generally, flow capacities expressed as runoff units are lowest in mainstem channels (larger areas in Figure 7b, 
and lower values in Figure 6a inset PDF, typically between 0.01 mm/day and 1 mm/day) and highest in smaller 
tributaries (peak in the inset PDF between 1 and 10 mm/day), consistent with the expectation that the wetted 
network expands toward channel heads with increasing runoff at the outlet. Clear multi-modality of the runoff 
flow capacity PDF (inset of Figure 6a) suggests that activation of channels is punctuated at different flow levels, 

Figure 6.  (a) Map of inferred hyporheic flow capacity shows decreased area-normalized (L T −1 units) flow capacity at higher drainage areas (main channel stems). 
Inset shows histogram of flow capacities. (b) Fit quality information for flow capacity logistic regressions (see Methods), including a map of log loss and (inset) a 
confusion matrix of logistic regression predictions compared to the random forest predictions to which they are fit. Fit quality is lower at higher logloss.
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with a large increase in channel length occurring near 1 mm/day when side 
channels activate. However, when expressed as absolute hyporheic flow 
capacity (discharge units), flow capacity increases with increasing drainage 
area, before becoming highly variable (with a smaller median value) in the 
main stem (Figure 7c).

3.4.  Hyporheic Exchange Flows

Figure  8 plots the hyporheic exchange flux (Dhef) relative to volumetric 
discharge at the outlet (D) across a range of flow exceedance probabilities. 
The colorbar plots the correspondence between exceedance probability and 
runoff. For small exceedances (large flows), hyporheic exchange fluxes are 
comparable in magnitude to outlet discharge (Dhef : D ≈ 1), whereas at low 
flows, the exchange flux magnitude increases to >100 times discharge at the 
outlet.

3.5.  L-Q Relations and the Persistence of Wetted Channel Extent

Random forest prediction on imagery dates, the power law L-Q fit in 
Figure 5b, and the logistic regression provide three ways to explore the rela-
tionship between L and Q. We illustrate these relationships in Figure  9b, 
which shows that the logit and power law inferred L-Q relations fall in the 
point cloud of extents predicted with the random forest, although the func-
tional forms are quite different. The logit predicts a sudden increase in wetted 
channel length between 1 and 2 mm/day, primarily due to expansion of the 
network out of the mainstem into side channels. These different methods of 
exploring L-Q relationships result in different probability distributions for L, 
plotted as cumulative distribution functions (CDFs) in Figure 9a. Differences 
arise because cloud-free imagery may be more readily available during dry 
periods, which would bias distributions inferred from imagery dates alone 
toward smaller wetted channel extents. This is made clear in Figure 9a, in 
which the CDF inferred from random forest imagery dates falls below the 

extents predicted from the logit and power law (which produce extent predictions on all days of the year solely as 
a function of discharge). Observational bias in the imagery toward dry dates is also apparent in Figure 9d, where 
the flow CDF predicts a higher likelihood of low flows when computed only using days on which imagery is 
available.

4.  Discussion
4.1.  Surface Water Presence Detection in Small Headwater Stream 
Networks

The approach outlined here can be used to aid ecological monitoring of chan-
nel networks. As hydrological regimes shift in response to increasing anthro-
pogenic pressures and a changing climate, so too will the wetted extent of 
channel networks (Lapides et al., 2021), with consequences for food webs, 
sedimentation, riverine nutrient cycling, habitat extent/quality, and other 
ecological processes (Arthington et al., 2005; Bernal et al., 2004; Hwan & 
Carlson,  2016; Larned et  al.,  2010; Sabo et  al.,  2010). A remote-sensing 
based framework for detecting the absence or presence of water in (often 
difficult-to-access) headwater stream networks would contribute to ongo-
ing efforts to address this significant challenge in watershed management 
(Moidu et al., 2021).

Figure 7.  Network hydraulic scaling relationships: With increasing upstream 
contributing area, (a) channel slope decreases, (b) hyporheic flow capacity 
expressed as runoff (ρ) decreases, (c) hyporheic flow capacity expressed as 
discharge 𝐴𝐴 () increases but then drops at high contributing areas, and (d) 
cross-sectional area transmissivity follows a similar increasing then decreasing 
pattern. Points and error bars show bin medians and the interquartile range.

Figure 8.  Magnitude of inferred, network-integrated hyporheic exchange 
flows relative to volumetric discharge at the catchment outlet across a range 
of flow values (expressed as runoff (mm/day) and as a flow exceedance 
probability).
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4.2.  Hyporheic Flow Properties Across River Networks

Drivers of surface water presence throughout headwater stream networks include: upstream runoff production, 
hyporheic zone transmissivity (hydraulic conductivity times average conductive depth), channel width, and slope 
(Ward et al., 2018). Channel slope can be approximated across landscapes using DEMs. However, both the spatial 
pattern of width-integrated transmissivity and the variation in runoff production are poorly constrained by our 
current data sets and understanding (Prancevic & Kirchner, 2019; Thompson et al., 2011). Timeseries of wetted 
channel extent reflect the spatial patterns in both of these fundamental but difficult-to-measure hydrological 
variables. Given an assumption about the pattern of transmissivity (such as the scaling relationship proposed in 
Prancevic & Kirchner, 2019), runoff production can be inferred from wetted channel maps. Conversely, given the 
assumption of spatial uniformity of runoff (Durighetto & Botter, 2022), the pattern of transmissivity (and thus 
hyporheic zone flow capacity, ρ) can be inferred with observations of water absence/presence in the channel that 
span a range of flows. The latter assumption is applied in this work to map ρ throughout the Dry and Hank Creek 
channel networks.

Estimating ρ using the presented method requires relatively high spatio-temporal resolution observations of 
wetted channel extent, but avoids unnecessary assumptions about the contributing-area scaling of hyporheic 
zone properties, thus generalizing the functional relationship (Figure 9b) between wetted channel length and 
discharge (Durighetto & Botter, 2022). The approach can account for the often discrete and discontinuous prop-
erties inherent in the geomorphology and geometry of channel networks. For example, an abrupt transition from 
a pool to a riffle, or from a tributary to a mainstem channel, might be accompanied by a large change in ρ (Käser 
et al., 2009; Schmadel et al., 2017). Here, the method revealed punctuated activation of different channels (main-
stem vs. side channels) that resulted in a stepped L versus Q relationship (Figure 9b), which cannot be captured 

Figure 9.  (a) Empirical cumulative distribution function (CDF) of wetted channel length from three methods: random 
forest-estimated wetted network length on imagery dates (scatter points), power law model trained on random forest results 
aggregated to total network length applied to all daily streamflow (dotted line), and logistic regression trained at each reach 
on random forest results applied to all daily streamflow (solid line). (b) Relationship between runoff and wetted channel 
length as estimated by each of the three methods. (c) Map of reach persistence based on logistic regression applied to all 
daily streamflow. (d) CDF of runoff using (solid line) all streamflow data during the study period and (scatter points) only 
streamflow on imagery dates. The CDF does not go to zero at the lowest non-zero flows because flow is zero (and thus not 
plot-able on a log scale) for a large fraction (roughly 30%) of the year.
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by the power-law L-Q model that emerges from presumed scaling relationships between contributing area and 
hyporheic zone transmissivity (Prancevic & Kirchner, 2019).

Estimates of ρ may also be useful in surface-groundwater exchange models, where parameters representing 
subsurface properties can influence understanding of hyporheic zone processes (Schmadel et  al.,  2017). In 
Figure 8, we used distributed ρ estimates to calculate that the magnitude of exchange fluxes relative to discharge 
(Dhef : D) increases significantly as flows decline, supporting the expectation that the influence of hyporheic 
processes on water quality (e.g., temperature, chemistry) is greater at low flows (Wondzell, 2011). Estimates of 
ρ could straightforwardly be used to parameterize subsurface elements of spatially distributed hyporheic zone 
models (e.g., Ward et al., 2018).

Summary of approach for predicting spatially resolved channel network wetness state across flow 
regime and spatially resolved hyporheic flow capacity: The workflow and heuristics developed here 
can be generally applied to any catchment with comparable data availability (and are not limited to 
satellite imagery; drones could also be used). Here, we provide a brief step-by-step overview of the 
methodology that can serve as a “recipe” for future applications in new catchments:

1.	 �At the outlet of a focus catchment, acquire a streamflow discharge record of sufficient duration to 
include a large range of flows (and thus a large range of potential wetted channel extents).

2.	 �Obtain local point observations of the extent of wetted channels across a range of streamflows when 
remotely sensed channel imagery is available (see following). It is not necessary to observe all points 
in the channel network, but the more data across a range of contributing areas, channel types, and 
climate and phenological conditions, the better. Section 2.2.4 describes heuristics for extrapolating 
and interpolating sparse observations to obtain a larger observational data set of wetted channel 
dynamics.

3.	 �Obtain a vector of pixel spectral band values at each point in the channel network from multispectral 
remotely sensed imagery, including at locations and times where channel wetness states have been 
observed.

4.	 �Train a statistical or machine learning classification model to identify channel wetness state (the 
target, wet or dry) as a function of spectral inputs (the predictors). We used a random forest model, 
described in Section 2.3.

5.	 �Use the trained model and all available remotely sensed imagery to predict wetted state throughout 
the channel network at various points in time (and therefore across a range streamflow values).

6.	 �Area normalize the outlet discharge (i.e., calculate instantaneous unit runoff) and match in time 
with the distributed predictions of channel wetness state to obtain pairs of runoff and wetness state 
at each point along the channel network for all dates with available imagery for generating wetness 
state predictions.

7.	 �For each point in the channel network, perform logistic regression on the paired runoff and wetness 
state values to identify the streamflow threshold at which flow appears on the surface (Section 2.5). 
Under the assumptions outlined in Section 2.6, this flow threshold provides an estimate of the hypor-
heic flow capacity at that point in the network.

After completion of the workflow described above, additional analyses may be performed. For exam-
ple, predictions of wetted channel length (the sum of lengths of all segments in the network predicted 
as wet by the random forest model) and flow can be used to estimate an L-Q relationship and then 
generate a continuous timeseries of wetted channel length (Section 2.4) and hyporheic flow proper-
ties (Section  2.5). Predictions of hyporheic flow capacity can be used to both generate continuous 
timeseries of channel wetness across the whole network and to constrain hyporheic exchange flows 
(e.g., Wondzell, 2011) as a function of total discharge at the catchment outlet (Section 2.6).

4.3.  Challenges and Opportunities

We introduced a generic workflow that nevertheless remains untested in different environments. Perhaps most 
obvious is the need to try the approach in more heavily forested watersheds where the channel may not be so 
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easily observed with satellite imagery. Even in such forested watersheds, higher resolution remote sensing data 
products with different sensing capabilities (e.g., thermal) and rapidly advancing unmanned aerial systems may 
make it possible to capture glimpses of channels through thick canopy.

Another limitation of the method is the availability of training data. Machine learning approaches are data 
hungry, and the LOO exercise in Table 1 reveals the relative importance of different training data in our seasonal 
watershed. However, we developed reasonable heuristics to increase the size of a training data set in data sparse 
environments, or where channel surveys are infrequent. For example, if a reach is mapped as dry for q = q0, it 
stands to reason that reach will remain dry for q = q1 ≪ q0, making it possible to utilize imagery on various dates 
for training a machine learning model. Analogously, if a reach is mapped as wet for q = q0, it likely remains 
wet for q = q2 ≫ q0. These heuristics (which follow from the flow emergence principle and the uniform runoff 
assumption) make it possible to expand sparse training data sets to include a wider range of environmental and 
flow conditions.

Higher data availability and quality may never answer whether machine learning models, which are difficult to 
interpret mechanistically, are getting the right answers for the right reasons. Is our random forest model truly 
“seeing” the water in the channels? There are promising indicators. The model performs very well in validation, 
and coherent scaling relationships between contributing area and hyporheic flow properties emerge (e.g., main-
stems have demonstrably lower ρ; Figure 7). The latter is promising considering we did not use contributing 
area as a predictor; when contributing area is included, results are generally similar. A random forest model is 
also among the less sophisticated machine learning models; more complex methods (e.g., convolutional neural 
networks) may provide additional support for the validity of the general approach, and may in fact be necessary 
in more challenging settings where, for example, canopy cover obscures channels.

For this technique to work a series of assumptions is required. Our interpolation and extrapolation approaches 
were designed to be as conservative as possible, and were chosen to be consistent with the hierarchical principle 
described by Botter et al. (2021) and current understanding of the physical drivers of wetted channel dynamics 
(e.g., Durighetto & Botter, 2022; Prancevic & Kirchner, 2019). The assumption of spatially uniform unit runoff 
may be problematic when attempting to use outlet discharge across larger catchments, where climate gradients 
and geological or vegetation heterogeneity might impact water balance within subwatersheds. Even in our small 
catchment, distinct lithologic blocks within the melange likely exhibit different flow generation properties Lovill 
et al. (2018). Measuring heterogeneity of runoff generation and flow recessions at sub-catchment scales is an 
outstanding problem in hydrology (e.g., Harman et al., 2009), and the assumption of uniform specific runoff is 
nearly ubiquitous across present mechanistic frameworks for predicting wetted channel dynamics (Durighetto & 
Botter, 2022; Prancevic & Kirchner, 2019; Ward et al., 2018). Additionally, we restricted our analysis to chan-
nels with larger contributing areas >10,000 m 2, hoping to integrate enough area to smooth out/overwhelm any 
issues related to small-scale runoff generation variability that might stem from specific hillslope, vegetation, or 
pedologic idiosyncrasies.

5.  Conclusion
We demonstrate a proof-of-concept approach for using multi-spectral imagery and machine learning trained on 
observational data to monitor the growth and contraction of a headwater stream at high spatial and temporal 
resolution. The method predicts water presence with 91% accuracy. Assuming unit runoff is spatially uniform, 
and that water emerges in the channel when up-network runoff production exceeds the flow capacity of the hypor-
heic zone, we use predicted maps of channel extent to estimate hyporheic hydrogeologic properties and hypor-
heic exchange. The approach has promising applications in environmental monitoring, and details a prototypical 
workflow for potential applications in other environments.

Data Availability Statement
Data and code for this publication are available in an online data repository (Dralle et al., 2022).
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